Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 17 de 17
1.
Bioorg Med Chem Lett ; 104: 129714, 2024 May 15.
Article En | MEDLINE | ID: mdl-38522589

A series of new fluorinated dihydrofurano-napthoquinone compounds were sucessfully synthesized in good yields using microwave-assisted multi-component reactions of 2-hydroxy-1,4-naphthoquinone, fluorinated aromatic aldehydes, and pyridinium bromide. The products were fully characterized using spectroscopic techniques and evaluated for their anti-inflammatory activity using lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. Among 12 new compounds, compounds 8b, 8d, and 8e showed high potent NO inhibitory activity in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells with IC50 values ranging from 1.54 to 3.92 µM. The levels of pro-inflammatory cytokines IL-1ß and IL-6 in LPS-stimulated RAW264.7 macrophages were remarkably decreased after the application of 8b, 8d, 8e and 8k. Molecular docking simulations revealed structure-activity relationships of 8b, 8d, and 8e toward NO synthase, cyclooxygenase (COX-2 over COX-1), and prostaglandin E synthase-1 (mPGES-1). Further physicochemical and pharmacokinetic computations also demonstrated the drug-like characteristics of synthesized compounds. These findings demonstrated the importance of fluorinated dihydrofurano-napthoquinone moieties in the development of potential anti-inflammatory agents.


Lipopolysaccharides , Naphthoquinones , Mice , Animals , Lipopolysaccharides/pharmacology , Molecular Docking Simulation , Naphthoquinones/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Cytokines/metabolism , RAW 264.7 Cells , Cyclooxygenase 2/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II
2.
Bioorg Med Chem Lett ; 98: 129566, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-38008338

In this study, new indol-fused pyrano[2,3-d]pyrimidines were designed and synthesized. These products were obtained in moderate to good yields and their structures were assigned by NMR, MS, and IR analysis. Afterwards, the biological important of the products was highlighted by evaluating in vitro for α-glucosidase inhibitory activity as well as acetylcholinesterase (AChE) inhibitory activity. Eleven products revealed substantial inhibitory activity against α-glucosidase enzyme, among which, two most potent products 11d,e were approximately 93-fold more potent than acarbose as a standard antidiabetic drug. Besides that, product 11k exhibited good AChE inhibition. The substituents on the 5-phenyl ring, attached to the pyran ring, played a critical role in inhibitory activities. The biological potencies have provided an opportunity to further investigations of indol-fused pyrano[2,3-d]pyrimidines as potential anti-diabetic agents.


Cholinesterase Inhibitors , Glycoside Hydrolase Inhibitors , Acetylcholinesterase/metabolism , alpha-Glucosidases/metabolism , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Hypoglycemic Agents/pharmacology , Molecular Docking Simulation , Pyrans/pharmacology , Pyrans/chemistry , Pyrimidines/pharmacology , Pyrimidines/chemistry , Structure-Activity Relationship , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology
3.
Aquat Toxicol ; 265: 106777, 2023 Dec.
Article En | MEDLINE | ID: mdl-38035650

The widespread use and continuous discharge of pharmaceuticals to environmental waters can lead to potential toxicity to aquatic biota. Pharmaceuticals and their metabolites are often complex organic and environmentally persistent compounds that are bioactive at low doses. This study aimed to investigate the effects of diclofenac (DCF) on the antioxidant defence system and neurotoxicity biomarkers in signal crayfish (Pacifastacus leniusculus) under weakly acidic and basic conditions. Crayfish were exposed to 200 µg/L of DCF at pH 6 and 8 for 96 h and subsequently underwent the depuration phase for 96 h. Gills, hepatopancreas, and muscle were sampled after the exposure and depuration phases to assess the toxicological biomarker responses of DCF in crayfish by evaluating lipid peroxidation (LPO) levels, activities of antioxidant enzymes and acetylcholinesterase. After the exposure phase, the hemolymph DCF concentration was detected one order higher at pH 6 than at pH 8. The DCF was subsequently fully eliminated from the hemolymph during the depuration phase. Our results showed that DCF caused alteration in the activities of six of the seven tested biomarkers in at least one crayfish tissue. Although exposure to DCF caused imbalances in the detoxification system on multiple tissue levels, it was regenerated to a balanced state after the depuration phase. Integrated biomarker response (IBRv2) showed that the highest toxicological response to DCF exposure was elicited in the gills, whereas the hepatopancreas was the highest-responding tissue after the depuration phase. Exposure to DCF at pH 6 caused higher toxicological effects than at pH 8; however, crayfish antioxidant mechanisms recovered more quickly at pH 6 than at pH 8 after the depuration phase. Our results showed that water pH influenced the toxicological effects of DCF, an ionisable compound in crayfish.


Antioxidants , Diclofenac , Water Pollutants, Chemical , Animals , Acetylcholinesterase/metabolism , Antioxidants/pharmacology , Astacoidea , Biomarkers/metabolism , Diclofenac/analysis , Diclofenac/toxicity , Hydrogen-Ion Concentration , Water/chemistry , Water/pharmacology , Water Pollutants, Chemical/toxicity
4.
RSC Adv ; 12(39): 25377-25387, 2022 Sep 05.
Article En | MEDLINE | ID: mdl-36199332

In this study, g-C3N4/UU-200 heterojunction photocatalysts displaying superior photocatalytic activity for organic pollutant elimination under white LED light irradiation were fabricated via an in situ solvothermal method. The successful construction of a heterojunction between g-C3N4 and UU-200 was evidenced by X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy. The improved photocatalytic degradation of rhodamine B (RhB) and tetracycline hydrochloride (TCH) over g-C3N4/UU-200 compared with that over the individual components can be attributed to the anchoring of the g-C3N4 layered structure on the UU-200 surface promoting the decrease of the bandgap of UU-200, as confirmed by ultraviolet-visible diffuse reflectance spectroscopy, and to the light-induced charge separation efficiency stemming from a suitable heterojunction structure, which was revealed by photoluminescence spectroscopy and electrochemical analyses. Specifically, the 40% g-C3N4/UU-200 composite showed the highest photocatalytic activity toward the degradation of RhB (97.5%) within 90 min and TCH (72.6%) within 180 min. Furthermore, this catalyst can be recycled four runs, which demonstrates the potential of the g-C3N4/UU-200 composite as an alternative visible-light-sensitive catalyst for organic pollutant elimination.

5.
Chemosphere ; 308(Pt 2): 136382, 2022 Dec.
Article En | MEDLINE | ID: mdl-36088977

Diphenhydramine (DPH) is a pharmaceutical with multiple modes of action, primarily designed as an antihistamine therapeutic drug. Among antihistamines, DPH is a significant contaminant in the environment, frequently detected in surface waters, sediments, and tissues of aquatic biota. In the present study, signal crayfish Pacifastacus leniusculus was used as a model organism because of their prominent ecological roles in freshwater ecosystems. The biochemical effects were investigated in crayfish exposed to the environmental (low: 2 µg L-1), ten times elevated (medium: 20 µg L-1), and the sublethal (high: 200 µg L-1) nominal concentrations of DPH in water for 96 h. Lipid peroxidation, antioxidant enzyme activities, and acetylcholinesterase activity were assessed as toxicological biomarkers in crayfish hepatopancreas, gills, and muscles. Low and medium DPH exposure caused imbalances only in glutathione-like enzyme activities. Integrated biomarker response showed the absolute DPH toxicity effects on all tested tissues under high exposure. This study identified that high, short-term DPH exposure induced oxidative stress in crayfish on multiple tissue levels, with the most considerable extent in muscles.


Acetylcholinesterase , Astacoidea , Animals , Antioxidants/pharmacology , Biomarkers , Diphenhydramine/toxicity , Ecosystem , Glutathione/pharmacology , Pharmaceutical Preparations , Water/pharmacology
6.
RSC Adv ; 12(34): 22004-22019, 2022 Aug 04.
Article En | MEDLINE | ID: mdl-36043070

A new approach for the synthesis of podophyllotoxin-naphthoquinone compounds using microwave-assisted three-component reactions is reported in this study. Novel podophyllotoxin-naphthoquinone derivatives with modification on ring E were synthesized. All the synthetic compounds were assessed in terms of their cytotoxicity profile against four cancer cell lines (KB, HepG2, A549, and MCF7), and noncancerous Hek-293 cell lines. Notably, treatment of SK-LU-1 cells with compounds 5a and 5b resulted in G2/M phase arrest of the cell cycle, caspase-3/7 activation, and apoptosis. Additionally, molecular docking studies were performed and showed important interaction of two compounds against residues in the colchicine-binding-site of tubulin as well. Taken together, compounds 5a and 5b were identified as potent anticancer agents.

7.
Environ Pollut ; 303: 119117, 2022 Jun 15.
Article En | MEDLINE | ID: mdl-35276249

Treated wastewater ponds (TWPs) serve as recipients and passive tertiary treatment mediators for recycled water. These nutrient-rich habitats are increasingly utilised in aquaculture, nevertheless multiple loads of various contaminants with adverse effects on aquatic fauna, including fish, have been recorded. In the present study, we investigated the effects of fish transfer in response to altered levels of pollution on liver metabolic profiles and tissue-specific oxidative stress biomarkers during short- and long-term exposure. In a field experiment, common carp (Cyprinus carpio) originating in severely polluted TWP were restocked after one year to a reference pond with a background pollutant concentration typical of the regional river. In contrast, fish that originated in the reference pond were restocked to TWP. Fish were sampled 0, 7, 14, 60, and 180 days after restocking and fish liver, kidney, intestine, and gill tissues were subjected to biomarker analysis. Pharmaceutically active compounds (PhACs) and metabolic profiles were determined in fish liver using liquid chromatography high-resolution mass spectrometry (LC-HRMS). Fish transferred from reference to polluted pond increased the antioxidant response and absorbed PhACs into metabolism within seven days. Fish liver metabolic profiles were shifted rapidly, but after 180 days to a lesser extent than profiles in fish already adapted in polluted water. Restocked fish from polluted to reference pond eliminated PhACs during the short phase within 14 days, and the highest antioxidant response accompanied the depuration process. Numerous elevated metabolic compounds persisted in such exposed fish for at least 60 days. The period of two weeks was suggested as sufficient for PhACs depuration, but more than two months after restocking is needed for fish to stabilise their metabolism. This study contributed to determining the safe handling with marketed fish commonly restocked to wastewaters and clarified that water pollution irreversibly altered fish metabolic profile.


Carps , Water Pollutants, Chemical , Animals , Antioxidants/metabolism , Carps/metabolism , Liver/metabolism , Metabolome , Oxidative Stress , Wastewater/analysis , Water/analysis , Water Pollutants, Chemical/analysis , Water Pollution/analysis
8.
J Hazard Mater ; 421: 126712, 2022 01 05.
Article En | MEDLINE | ID: mdl-34388919

Aquaculture is increasing at the global scale, and beneficial reuse of wastewater is becoming crucial in some regions. Here we selected a unique tertiary treatment system for study over a one-year period. This experimental ecosystem-based approach to effluent management included a treated wastewater pond (TWP), which receives 100% effluent from a wastewater treatment plant, and an aquaculture pond (AP) that receives treated water from the TWP for fish production. We examined the fate of a wide range of pharmaceutically active compounds (PhACs) in this TWP-AP system and a control pond fed by river water using traditional grab sampling and passive samplers. We then employed probabilistic approaches to examine exposure hazards. Telmisartan, carbamazepine, diclofenac and venlafaxine, exceeded ecotoxicological predicted no effect concentrations in influent wastewater to the TWP, but these water quality hazards were consistently reduced following treatment in the TWP-AP system. In addition, both grab and passive sampling approaches resulted in similar occurrence patterns of studied compounds, which highlights the potential of POCIS use for water monitoring. Based on the approach taken here, the TWP-AP system appears useful as a tertiary treatment step to reduce PhACs and decrease ecotoxicological and antibiotic resistance water quality hazards prior to beneficial reuse in aquaculture.


Pharmaceutical Preparations , Water Pollutants, Chemical , Animals , Aquaculture , Ecosystem , Environmental Monitoring , Ponds , Wastewater/analysis , Water , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
9.
Environ Sci Pollut Res Int ; 28(32): 43885-43896, 2021 Aug.
Article En | MEDLINE | ID: mdl-33837942

This study investigated the occurrence, distribution of several additive brominated flame retardants (BFRs) such as polybrominated diphenyl ethers (PBDEs) and some novel brominated flame retardants (NBFRs) in urban indoor dust collected from ten inner districts of Hanoi, Vietnam to assess the contamination status, emission sources, as well as their associated human exposure through indoor dust ingestion and health risks. Total concentrations of PBDEs and NBFRs in indoor dust samples ranged from 43 to 480 ng g-1 (median 170 ng g-1) and from 56 to 2200 ng g-1 (median 180 ng g-1), respectively. The most abundant PBDE congener in these dust samples was BDE-209 with concentrations ranging from 29 to 360 ng g-1, accounting for 62.6-86.5% of total PBDE levels. Among the NBFRs analyzed, decabromodiphenyl ethane (DBDPE) was the predominant compound with a mean contribution of 98.6% total NBFR amounts. Significant concentrations of DBDPE were detected in all dust samples (median 180 ng g-1, range 54-2200 ng g-1), due to DBDPE as a substitute for deca-BDE. Other NBFRs such as 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), pentabromoethylbenzene (PBEB) and 2,2',4,4',5,5'-hexabromobiphenyl (BB-153) were found at very low levels. Based on the measured BFR concentrations, daily intake doses (IDs) of PBDEs and NBFRs via dust ingestion at exposure scenarios using the median and 95th percentile levels for both adults and children were calculated for risk assessment. The results showed that the daily exposure doses via dust ingestion of all compounds, even in the high-exposure scenarios were also lower than their reference dose (RfD) values. The lifetime cancer risks (LTCR) were much lower than the threshold level (10-6), which indicated the acceptable health risks resulting from indoor BFRs exposure for urban residents in Hanoi.


Air Pollution, Indoor , Flame Retardants , Adult , Air Pollution, Indoor/analysis , Child , Dust/analysis , Environmental Exposure/analysis , Environmental Monitoring , Flame Retardants/analysis , Halogenated Diphenyl Ethers/analysis , Humans , Vietnam
10.
J Nanosci Nanotechnol ; 21(5): 3156-3164, 2021 05 01.
Article En | MEDLINE | ID: mdl-33653491

Lycopene and resveratrol are well-known for their high bioactivity, anti-inflammatory effects, and strong antioxidant properties. The combination of lycopene and resveratrol was synergistic in the potentializing immunity of the mammal body. In this study, the scalable co-encapsulation of lycopene and resveratrol into polymeric nanoparticles was performed using lycopene extracted from ripe gac fruit. These nanoparticles exhibited excellent water dispersion and spherical morphology with average particle diameters of 66.102 nm. The particle size was proportional to the lycopene/resveratrol ratio. The combinative use of lecithin and Tween® as surfactants and the use of a polylactide-polyethylene glycol copolymer as an encapsulation agent generated well-defined lycopene/resveratrol nanoparticles although the total content of these active compounds reached 12%. The stability of lycopene was enhanced when combined with resveratrol and antioxidants such as vitamin E and butylated hydroxytoluene. After 3 months of storage at -16 °C, the lycopene content in the lycopene/resveratrol nanopowder remained at ∼95%.

11.
Environ Sci Pollut Res Int ; 26(27): 28106-28126, 2019 Sep.
Article En | MEDLINE | ID: mdl-31363978

The occurrence and fate of antibiotic compounds in water can adversely affect human and animal health; hence, the removal of such substrates from soil and water is indispensable. Herein, we described the synthesis method of mesoporous carbon (MPC) via the pyrolysis route from a coordination polymer Fe-based MIL-53 (or MIL-53, shortly). The MPC structure was analyzed by several physical techniques such as SEM, TEM, BET, FT-IR, VSM, and XRD. The response surface methodology (RSM) was applied to find out the effects of initial concentration, MPC dosage, and pH on the removal efficiency of trimethoprim (TMP) and sulfamethoxazole (SMX) antibiotics in water. Under the optimized conditions, the removal efficiencies of TMP and SMX were found to be 87% and 99%, respectively. Moreover, the adsorption kinetic and isotherm studies showed that chemisorption and the monolayer adsorption controlled the adsorption process. The leaching test and recyclability studies indicated that the MPC structure was stable and can be reused for at least four times without any considerable change in the removal efficiency. Plausible adsorption mechanisms were also addressed in this study. Because of high maximum adsorption capacity (85.5 mg/g and 131.6 mg/g for TMP and SMX, respectively) and efficient reusability, MPC is recommended to be a potential adsorbent for TMP and SMX from water media.


Sulfonamides/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Anti-Bacterial Agents/chemistry , Carbon , Kinetics , Metal-Organic Frameworks , Models, Chemical , Pyrolysis , Spectroscopy, Fourier Transform Infrared , Sulfamethoxazole/chemistry , Trimethoprim , Water
12.
Chem Asian J ; 13(4): 421-431, 2018 Feb 16.
Article En | MEDLINE | ID: mdl-29316332

4-Trifluoromethyl-3-oxo-ß-lactams were unexpectedly transformed into 2-[(2,2-difluorovinyl)amino]-2-oxoacetates as major products, accompanied by minor amounts of 2-oxo-2-[(2,2,2-trifluoroethyl)amino]acetates, upon treatment with alkyl halides and triethylamine in DMSO. This peculiar C3-C4 bond fission reactivity was investigated in-depth, from both an experimental and a computational point of view, in order to shed light on the underlying reaction mechanism.


Esters/chemical synthesis , Oxamic Acid/analogs & derivatives , Oxamic Acid/chemical synthesis , beta-Lactams/chemistry , Esters/chemistry , Models, Chemical , Molecular Structure , Oxamic Acid/chemistry
13.
ChemistryOpen ; 6(3): 301-319, 2017 06.
Article En | MEDLINE | ID: mdl-28638759

Due to the emerging resistance against classical ß-lactam-based antibiotics, a growing number of bacterial infections has become harder to treat. This alarming tendency necessitates continued research on novel antibacterial agents. Many classes of ß-lactam antibiotics are characterized by the presence of the 3-aminoazetidin-2-one core, which resembles the natural substrate of the target penicillin-binding proteins. In that respect, this Review summarizes the different synthetic pathways toward this key structure for the development of new antibacterial agents. The most extensively applied methods for 3-amino-ß-lactam ring formation are discussed, in addition to a few less common strategies. Moreover, approaches to introduce the 3-amino substituent after ring formation are also covered.

14.
Bioorg Med Chem Lett ; 26(15): 3652-7, 2016 08 01.
Article En | MEDLINE | ID: mdl-27342752

The synthesis of various substituted triazole-indenoisoquinoline hybrids was performed based on a CuI-catalyzed 1,3-cycloaddition between propargyl-substituted derivatives and the azide-containing indenoisoquinoline. Besides, a variety of N-(alkyl)propargylindenoisoquinolines was used as substrates for the construction of triazole-indenoisoquinoline-AZT conjugated via a click chemistry-mediated coupling with 3'-azido-3'-deoxythymidine (AZT). Thus, twenty three new indenoisoquinoline-substituted triazole hybrids were successfully prepared and evaluated as cytotoxic agents, revealing an interesting anticancer activity of four triazole linker-indenoisoquinoline-AZT hybrids in KB and HepG2 cancer cell lines.


Antineoplastic Agents/pharmacology , Isoquinolines/pharmacology , Triazoles/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Hep G2 Cells , Humans , Isoquinolines/chemistry , KB Cells , Molecular Structure , Structure-Activity Relationship , Triazoles/chemistry
15.
Bioorg Med Chem Lett ; 25(16): 3355-8, 2015 Aug 15.
Article En | MEDLINE | ID: mdl-26081288

1,4-Dihydroxy-2-naphthoic acid was used as a substrate for a straightforward five-step synthesis of 3-substituted 1H-benzo[g]isochromene-5,10-diones, with a Michael addition of N-acylmethylpyridinium ylides across 2-hydroxymethyl-1,4-naphthoquinone and a subsequent acid-mediated dehydratation of intermediate hemiacetals as the key steps. The obtained benzo[g]isochromene-5,10-diones were subsequently deployed for further synthetic elaboration to produce new 3,4-dihydrobenzo[g]isochromene-5,10-diones and (3,4-dihydro-)4a,10a-epoxybenzo[g]isochromene-5,10-diones. All compounds were screened for their cytotoxic and antimicrobial effects, revealing an interesting cytotoxic activity of 1H-benzo[g]isochromene-5,10-diones against different cancer cell lines.


Epoxy Compounds/chemical synthesis , Epoxy Compounds/pharmacology , Naphthoquinones/chemical synthesis , Naphthoquinones/pharmacology , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Carboxylic Acids/chemical synthesis , Carboxylic Acids/chemistry , Carboxylic Acids/pharmacology , Cell Line, Tumor , Drug Screening Assays, Antitumor , Epoxy Compounds/chemistry , Humans , Inhibitory Concentration 50 , Molecular Structure , Naphthalenes/chemical synthesis , Naphthalenes/chemistry , Naphthalenes/pharmacology , Naphthoquinones/chemistry , Structure-Activity Relationship
16.
Bioorg Med Chem Lett ; 24(22): 5190-4, 2014 Nov 15.
Article En | MEDLINE | ID: mdl-25442310

Betulinic acid and analogous naturally occurring triterpenoid acids were transformed into the corresponding propargyl esters and subsequently deployed as substrates for a click chemistry-mediated coupling with azidothymidine (AZT) en route to novel 1,2,3-triazole-tethered triterpenoid-AZT conjugates. Twelve new hybrids were thus prepared and assessed in terms of their cytotoxic activity, revealing an interesting anticancer activity of five triterpenoid-AZT hybrids on KB and Hep-G2 tumor cell lines.


Cytotoxins/chemical synthesis , Plant Extracts/chemical synthesis , Triazoles/chemical synthesis , Triterpenes/chemical synthesis , Zidovudine/chemical synthesis , Araliaceae , Cytotoxins/pharmacology , Drug Evaluation, Preclinical/methods , Eleutherococcus , Esters , Hep G2 Cells , Humans , Plant Extracts/pharmacology , Triazoles/pharmacology , Triterpenes/pharmacology , Zidovudine/pharmacology
17.
J Org Chem ; 77(14): 5982-92, 2012 Jul 20.
Article En | MEDLINE | ID: mdl-22721444

A convenient approach toward nonactivated 1-alkyl-2-(trifluoromethyl)azetidines as a new class of constrained azaheterocycles was developed starting from ethyl 4,4,4-trifluoroacetoacetate via imination, hydride reduction, chlorination, and base-induced ring closure. Furthermore, the reactivity profile of these 2-CF(3)-azetidines was assessed by means of quaternization and subsequent regiospecific ring opening at C4 of the azetidinium intermediates by oxygen, nitrogen, carbon, sulfur, and halogen nucleophiles, pointing to a clear difference in reactivity compared to azetidines bearing other types of electron-withdrawing groups at C2.


Amines/chemical synthesis , Azetidines/chemical synthesis , Amines/chemistry , Azetidines/chemistry , Molecular Structure , Salts/chemistry , Stereoisomerism
...